Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.573
Filtrar
1.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097188

RESUMO

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Assuntos
Macrófagos Alveolares , Células-Tronco Pluripotentes , Suínos , Animais , Endocitose , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Suínos/virologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Tempo
2.
Int J Immunopathol Pharmacol ; 36: 3946320221145520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36565299

RESUMO

OBJECTIVE: The haematopoietic cytopenia (HC) of the cyclin-dependent kinase (CDK)4/6 inhibitors was evaluated using the Food and Drug Administration Adverse Event Reporting System (FAERS). METHOD: Data from 1 January 2015 to 31 December 2021 has been retrieved from the FAERS database. Disproportionality analysis and Bayesian analysis were utilized in the data mining. The reporting odds ratio (ROR) with 95% confidence interval (CI) for HC was calculated for each CDK 4/6 inhibitor agent. Clinical features of the patients were collected and compared between death outcome and non-death outcome groups. Time to onset (TTO), proportion of deaths, life-threatening and hospitalizations of CDK 4/6 inhibitors-associated HC were also studied. RESULTS: A total of 17,235 cases of HC associated with CDK 4/6 inhibitors were identified with a median age of 65 years (interquartile range [IQR] 57-73). Palbociclib appeared the strongest signal, with the highest (ROR 9.64, 95% CI 9.46-9.83), followed by ribociclib (ROR 6.38, 95% CI 6.04-6.73) and then abemaciclib (ROR 2.72, 95% CI 2.49-2.97). Patients aged 18-64 had a higher proportion of deaths than those aged 65-84 (12.21% vs. 9.91%, p = 0.001). In Africa and Asia, the proportions of deaths were higher (31.65% and 26.13%, respectively). The median TTO was 26 days (IQR 14-65) for abemaciclib, 33 days (IQR 15-134) for palbociclib and 23 days (IQR 14-69) for ribociclib, respectively. The highest proportion of deaths, life-threatening and hospitalizations all occurred in abemaciclib (13.00%, 5.42% and 44.04%, respectively). CONCLUSIONS: Greater proportions of deaths occurred in Africa and Asia. HC may occur early in any CDK 4/6 inhibitor regimen. Abemaciclib had the highest proportion of deaths, life-threatening and hospitalizations. Health care workers should be more concerned about CDK 4/6 inhibitors. The higher proportions of serious events, including deaths, from Africa and Asia, as well as for abemaciclib, deserve further investigations through additional pharmacoepidemiological approaches.


Assuntos
Antineoplásicos , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Doenças Hematológicas , Hematopoese , Inibidores de Proteínas Quinases , Idoso , Humanos , Teorema de Bayes , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Estados Unidos/epidemiologia , United States Food and Drug Administration , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/epidemiologia , Doenças Hematológicas/mortalidade , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Hematopoese/efeitos dos fármacos , África/epidemiologia , Ásia/epidemiologia , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
3.
Mar Drugs ; 20(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323500

RESUMO

Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 µg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.


Assuntos
Ciclofosfamida/toxicidade , Hematopoese/efeitos dos fármacos , Agonistas Mieloablativos/toxicidade , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Sargassum , Animais , Biomarcadores/sangue , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Humanos , Células K562 , Contagem de Leucócitos , Lipidômica , Camundongos , Neutrófilos/efeitos dos fármacos , Contagem de Plaquetas
4.
Life Sci ; 289: 120190, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883100

RESUMO

AIMS: Hematopoietic acute radiation syndrome (H-ARS) can cause lethality, and therefore, the necessity of a safe radioprotector. The present study was focused on investigating the role of melatonin in granulocytes colony-stimulating factor (G-CSF) and related mechanisms underlying the reduction of DNA damage in hematopoietic system of irradiated mice. MAIN METHODS: C57BL/6 male mice were exposed to 2, 5, and 7.5Gy of whole-body irradiation (WBI), 30 min after intra-peritoneal administration of melatonin with different doses. Mice were sacrificed at different time intervals after WBI, and bone marrow, splenocytes, and peripheral blood lymphocytes were isolated for studying various parameters including micronuclei (MN), cell cycle, comet, γ-H2AX, gene expression, amino acid profiling, and hematology. KEY FINDINGS: Melatonin100mg/kg ameliorated radiation (7.5Gy and 5Gy) induced MN frequency and cell death in bone marrow without mortality. At 24 h of post-WBI (2Gy), the frequency of micronucleated polychromatic erythrocytes (mnPCE) with different melatonin doses revealed 20 mg/kg as optimal i.p. dose for protecting the hematopoietic system against radiation injury. In comet assay, a significant reduction in radiation-induced % DNA tail (p ≤ 0.05) was observed at this dose. Melatonin reduced γ-H2AX foci/cell and eventually reached to the control level. Melatonin also decreased blood arginine levels in mice after 24 h of WBI. The gene expression of G-CSF, Bcl-2-associated X protein (BAX), and Bcl2 indicated the role of melatonin in G-CSF regulation and downstream pro-survival pathways along with anti-apoptotic activity. SIGNIFICANCE: The results revealed that melatonin recovers the hematopoietic system of irradiated mice by inducing G-CSF mediated radioprotection.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Raios gama/efeitos adversos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hematopoese , Melatonina/farmacologia , Lesões Experimentais por Radiação/metabolismo , Animais , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Masculino , Camundongos , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia
5.
Exp Hematol ; 105: 22-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763024

RESUMO

Exposure of young C57BL/6 (B6) mice to two courses of busulfan (BSF) injections or two rounds of sublethal total-body irradiation (TBI) induced significant damage to the function of hematopoietic stem and progenitor cells (HSPCs). Fifteen weeks after treatment, BSF- and TBI-treated mice had reduced white blood cells without significant change in red blood cells or platelets, indicating that BSF and TBI hematotoxicity was chronic, with leukocytes being the major targets. Hematopoietic damage induced by BSF or TBI persisted long term. Residual adverse effects were reflected by significantly decreased CD45R B cells and reduced recovery of total bone marrow cells, especially HSPCs carrying markers for KSL (Kit+Sca-1+Lin-) cells, multipotent progenitor (MPP) cells (KSLCD34+CD135+), myeloid progenitor (MP) cells (Kit+Sca-1-Lin-), and common lymphoid progenitor (CLP) cells 62 wk posttreatment. Transplantation of bone marrow (BM) cells from BSF and TBI donors at 49 weeks after treatment into lethally irradiated hosts resulted in decreased engraftment of CD45R B cells in blood and reduced reconstitution of BM HSPCs including KSL cells, short-term hematopoietic stem cells (KSLCD34+CD135-), MPP cells, and MP cell subsets. TBI donor had better reconstitution of CLP cells in recipients posttransplantation than did BSF donor, suggesting an impact of TBI and BSF on B cells at different development stages. In summary, BSF and TBI exposure produced long-lasting adverse effects on hematopoiesis with pronounced effects on mature B cells, immature ST-HSCs, and hematopoietic progenitor cells. Our results may have implications for therapy of human diseases.


Assuntos
Bussulfano/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Agonistas Mieloablativos/farmacologia , Animais , Células da Medula Óssea , Transplante de Medula Óssea , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Irradiação Corporal Total
7.
Sci Rep ; 11(1): 23250, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853370

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of ß-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.


Assuntos
Envelhecimento/patologia , Inflamação/patologia , Linfo-Histiocitose Hemofagocítica/patologia , Células Estromais/patologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos
8.
Bull Exp Biol Med ; 172(2): 236-244, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34855080

RESUMO

We studied the possibility of using sodium deoxyribonucleate (Derinat) for improving the efficiency of co-transplantation of mesenchymal (MSC) and hematopoietic stem cells (HSC) to female F1(CBA×C57BL/6) mice with bone marrow aplasia caused by exposure to γ-radiation. It was found that immunomodulator Derinat enhanced the effect of co-transplantation, in particular, triple post-irradiation administration of Derinat accelerated hematopoiesis recovery judging from the parameters of peripheral blood, total cellularity of the bone marrow and spleen, and animal survival. Single or double administration of Derinat prior to irradiation was ineffective. The optimal result was obtained when the following scheme was applied: MSC→HSC with an interval of 48 h starting during the first hours after irradiation and triple administration of Derinat (in 10-15 min, 3 and 7 days after irradiation) in a dose of 3 mg/mouse.


Assuntos
DNA/farmacologia , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Lesões Experimentais por Radiação/terapia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/terapia , Terapia Combinada , DNA/química , DNA/uso terapêutico , Feminino , Raios gama/efeitos adversos , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Lesões Experimentais por Radiação/etiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Sódio/química , Sódio/farmacologia , Irradiação Corporal Total/efeitos adversos
9.
Blood Cancer J ; 11(12): 193, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864823

RESUMO

Blocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Hematopoese/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular/métodos , Mutação/efeitos dos fármacos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830256

RESUMO

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Endocanabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Metástase Neoplásica , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
11.
Clin Sci (Lond) ; 135(20): 2377-2391, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34608942

RESUMO

One of the health benefits of endurance exercise training (ET) is the stimulation of hematopoiesis. However, the mechanisms underlying ET-induced hematopoietic adaptations are understudied. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits proliferation of early hematopoietic progenitor cells. The angiotensin I-converting enzyme (ACE) NH2-terminal promotes hematopoiesis by inhibiting the anti-hematopoietic effect of Ac-SDKP. Here we demonstrate for the first time the role of ACE NH2-terminal in ET-induced hematopoietic adaptations. Wistar rats were subjected to 10 weeks of moderate-(T1) and high-(T2) volume swimming-training. Although both protocols induced classical ET-associated adaptations, only T2 increased plasma ACE NH2-domain activity (by 40%, P=0.0003) and reduced Ac-SDKP levels (by 50%, P<0.0001). T2 increased the number of hematopoietic stem cells (HSCs; ∼200%, P=0.0008), early erythroid progenitor colonies (∼300%, P<0.0001) and reticulocytes (∼500%, P=0.0007), and reduced erythrocyte lifespan (∼50%, P=0.022). Following, Wistar rats were subjected to T2 or T2 combined with ACE NH2-terminal inhibition (captopril (Cap) treatment: 10 mg.kg-1.day-1). T2 combined with ACE NH2-terminal inhibition prevented Ac-SDKP decrease and attenuated ET-induced hematopoietic adaptations. Altogether, our findings show that ET-induced hematopoiesis was at least partially associated with increased ACE NH2-terminal activity and reduction in the hematopoietic inhibitor Ac-SDKP.


Assuntos
Treino Aeróbico , Hematopoese , Células-Tronco Hematopoéticas/enzimologia , Peptidil Dipeptidase A/metabolismo , Resistência Física , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Feminino , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Oligopeptídeos/metabolismo , Condicionamento Físico Animal , Domínios Proteicos , Ratos Wistar , Fatores de Tempo
12.
Toxicology ; 464: 152990, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673135

RESUMO

Benzene is a typical hematopoietic toxic substance, that can cause serious blood and circulatory system diseases such as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia, but the immunological mechanism by which this occurs is not clear. T helper cells play a key role in regulating the immune balance in the body. In this study, benzene-induced hematopoietic toxicity BALB/c mice model was established, and changes in immune organs and T helper cell subsets (Th1, Th2, Th17 and Treg cells) were explored. At 28 days after subcutaneous injection of 150 mg/kg benzene, mice showed pancytopenia and obvious pathological damage to the bone marrow, spleen, and thymus. Flow cytometry revealed that the number of CD4+CD25+Foxp3+ Treg cells in the spleen increased significantly. The level of IL-10 in the spleen, serum, and bone marrow increased, while the levels of IL-17 in the spleen and serum decreased. Furthermore, the levels of CD4 and CD8 proteins in the spleen decreased. Immunofluorescence results showed that levels of Foxp3, a specific transcription factor that induced the differentiation of Treg cells, increased after exposure to benzene. Our results demonstrate that immunosuppression occurred in the benzene-induced hematopoietic toxicity model mice, and Treg cells and secreted IL-10 may play a key role in the process.


Assuntos
Benzeno/toxicidade , Hematopoese/efeitos dos fármacos , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Hematopoese/imunologia , Tolerância Imunológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Baço/efeitos dos fármacos , Baço/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Timo/efeitos dos fármacos , Timo/patologia
13.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681777

RESUMO

Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.


Assuntos
Senescência Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Mitocôndrias/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
14.
Cells ; 10(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685756

RESUMO

Protein hydrolysate injection (PH) is a sterile solution of hydrolyzed protein and sorbitol that contains 17 amino acids and has a molecular mass of 185.0-622.0 g/mol. This study investigated the effect of PH on hematopoietic function in K562 cells and mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction. In these myelosuppressed mice, PH increased the number of hematopoietic cells in the bone marrow (BM) and regulated the concentration of several factors related to hematopoietic function. PH restored peripheral blood cell concentrations and increased the numbers of hematopoietic stem cells and progenitor cells (HSPCs), B lymphocytes, macrophages, and granulocytes in the BM of CTX-treated mice. Moreover, PH regulated the concentrations of macrophage colony stimulating factor (M-CSF), interleukin (IL)-2, and other hematopoiesis-related cytokines in the serum, spleen, femoral condyle, and sternum. In K562 cells, the PH-induced upregulation of hematopoiesis-related proteins was inhibited by transfection with M-CSF siRNA. Therefore, PH might benefit the BM hematopoietic system via the regulation of M-CSF expression, suggesting a potential role for PH in the treatment of hematopoietic dysfunction caused by cancer therapy.


Assuntos
Hematopoese/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Hidrolisados de Proteína/administração & dosagem , Hidrolisados de Proteína/farmacologia , Aminoácidos/análise , Animais , Células da Medula Óssea/efeitos dos fármacos , Ciclofosfamida/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/patologia , Humanos , Células K562 , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Peso Molecular , Esterno/efeitos dos fármacos , Esterno/patologia
15.
Int Immunopharmacol ; 100: 108114, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34492531

RESUMO

Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Animais , Humanos , Leucemia/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico
16.
Cell Rep ; 36(7): 109562, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407416

RESUMO

Hematopoietic ontogeny consists of two broad programs: an initial hematopoietic stem cell (HSC)-independent program followed by HSC-dependent hematopoiesis that sequentially seed the fetal liver and generate blood cells. However, the transition from HSC-independent to HSC-derived hematopoiesis remains poorly characterized. To help resolve this question, we developed Mds1CreERT2 mice, which inducibly express Cre-recombinase in emerging HSCs in the aorta and label long-term adult HSCs, but not HSC-independent yolk-sac-derived primitive or definitive erythromyeloid (EMP) hematopoiesis. Our lineage-tracing studies indicate that HSC-derived erythroid, myeloid, and lymphoid progeny significantly expand in the liver and blood stream between E14.5 and E16.5. Additionally, we find that HSCs contribute the majority of F4/80+ macrophages in adult spleen and marrow, in contrast to their limited contribution to macrophage populations in brain, liver, and lungs. The Mds1CreERT2 mouse model will be useful to deconvolute the complexity of hematopoiesis as it unfolds in the embryo and functions postnatally.


Assuntos
Envelhecimento/metabolismo , Alelos , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Animais , Linhagem da Célula/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feto/citologia , Hemangioblastos/metabolismo , Hematopoese/efeitos dos fármacos , Fígado/embriologia , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno/farmacologia
17.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463253

RESUMO

The bone marrow niche plays critical roles in hematopoietic recovery and hematopoietic stem cell (HSC) regeneration after myeloablative stress. However, it is not clear whether systemic factors beyond the local niche are required for these essential processes in vivo. Thrombopoietin (THPO) is a key cytokine promoting hematopoietic rebound after myeloablation and its transcripts are expressed by multiple cellular sources. The upregulation of bone marrow-derived THPO has been proposed to be crucial for hematopoietic recovery and HSC regeneration after stress. Nonetheless, the cellular source of THPO in myeloablative stress has never been investigated genetically. We assessed the functional sources of THPO following two common myeloablative perturbations: 5-fluorouracil (5-FU) administration and irradiation. Using a Thpo translational reporter, we found that the liver but not the bone marrow is the major source of THPO protein after myeloablation. Mice with conditional Thpo deletion from osteoblasts and/or bone marrow stromal cells showed normal recovery of HSCs and hematopoiesis after myeloablation. In contrast, mice with conditional Thpo deletion from hepatocytes showed significant defects in HSC regeneration and hematopoietic rebound after myeloablation. Thus, systemic THPO from the liver is necessary for HSC regeneration and hematopoietic recovery in myeloablative stress conditions.


Assuntos
Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Hepatócitos/metabolismo , Agonistas Mieloablativos/farmacologia , Comunicação Parácrina , Trombopoetina/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação , Trombopoetina/genética , Fatores de Tempo
18.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34383713

RESUMO

Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-ß plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-ß1 than TGF-ß2 and TGF-ß3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-ß1/TGF-ß3 protein trap, to block the excessive TGF-ß signaling. Treatment of human mesenchymal stromal cells with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGF-ß1 to induce collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PCs) with WT JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PCs was attributed to its ability to block TGF-ß1-induced p57Kip2 expression and SMAD2 activation, thereby allowing normal rather than MF PCs to preferentially proliferate and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1lo mice, a murine model of MF, were treated with AVID200, resulting in the reduction in BM fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short-term and long-term HSCs. Collectively, these data provide the rationale for TGF-ß1 blockade, with AVID200 as a therapeutic strategy for patients with MF.


Assuntos
Proliferação de Células/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Mielofibrose Primária/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Medula Óssea/patologia , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Fêmur , Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/genética , Masculino , Megacariócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mutação , Fosforilação/efeitos dos fármacos , Mielofibrose Primária/tratamento farmacológico , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/antagonistas & inibidores , Fator de Crescimento Transformador beta3/metabolismo
19.
Nat Commun ; 12(1): 4803, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376657

RESUMO

Chemotherapies may increase mutagenesis of healthy cells and change the selective pressures in tissues, thus influencing their evolution. However, their contributions to the mutation burden and clonal expansions of healthy somatic tissues are not clear. Here, exploiting the mutational footprint of some chemotherapies, we explore their influence on the evolution of hematopoietic cells. Cells of Acute Myeloid Leukemia (AML) secondary to treatment with platinum-based drugs show the mutational footprint of these drugs, indicating that non-malignant blood cells receive chemotherapy mutations. No trace of the 5-fluorouracil (5FU) mutational signature is found in AMLs secondary to exposure to 5FU, suggesting that cells establishing the leukemia could be quiescent during treatment. Using the platinum-based mutational signature as a barcode, we determine that the clonal expansion originating the secondary AMLs begins after the start of the cytotoxic treatment. Its absence in clonal hematopoiesis cases is consistent with the start of the clonal expansion predating the exposure to platinum-based drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Leucemia Mieloide/genética , Mutagênese/efeitos dos fármacos , Doença Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Evolução Clonal/efeitos dos fármacos , Evolução Clonal/genética , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Estudos de Coortes , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Hematopoese/genética , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide/induzido quimicamente , Mutação/efeitos dos fármacos , Segunda Neoplasia Primária/induzido quimicamente , Segunda Neoplasia Primária/genética , Platina/administração & dosagem , Platina/efeitos adversos , Proteína Supressora de Tumor p53/genética
20.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206607

RESUMO

The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.


Assuntos
Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/imunologia , Hematopoese/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...